Science-based trigger for the terrestrial assessment of human pharmaceuticals

Samuel K Maynard¹; Lisa A Constantine²; Joanne Elmoznino²; Jutta Hellstern³; Birgit Hoeger³; Andreas Häner⁴ Reinhard Laenge⁵; Todd Davidson⁶; Michael R Lee⁷; Alison Nimrod Perkins⁷; Jason R Snape¹; Joan G Tell⁸. ¹AstraZeneca, United Kingdom ²Pfizer, Groton, CT, United States; ³Novartis, Basel, Switzerland; ⁴F. Hoffmann-La Roche Ltd, Basel Switzerland; ⁵Bayer AG, Berlin, Germany; ⁶Bristol Myers Squibb, New Brunswick, NJ, United States; ⁷Eli Lilly, Indianapolis, IN, United States; ⁸Merck & Co., Inc, Kenilworth, NJ, United States

Abstract

Current environmental risk assessments (ERA) for human pharmaceuticals focus primarily on the risks to the aquatic environment⁽¹⁾. Sewage sludge from waste water treatment plants (WWTP) is often used as fertiliser; consequently, there may also be exposure to terrestrial environments for active pharmaceutical ingredients (APIs) which adsorb significantly to sewage sludge. In the updated draft guidance document⁽²⁾, the EMA recognise that, in addition to adsorption, high concentrations in the WWTP have the potential to drive risk in the terrestrial environment. The guidance proposes a combined trigger incorporating both PECsw (surrogate for concentrations entering WWTPs) and Koc (adsorption). The present study examines existing terrestrial toxicity data to demonstrate a scientific basis for an alternative approach, based on a PECsoil action limit (≥0.1 mg/kg), for triggering terrestrial ERAs.

Special note on soil micro-organism test

- Soil micro-organism test (SMO; nitrogen transformation test) represent a special case were the study design limits the utility of the data in this analysis
 - SMO studies are often designed to test the effects of 1 and 5 or 10 x the PECsoil
 - The PECsoil values for pharmaceuticals are often very low and the studies regularly result in no effects at the highest concentration tested
 PNECs from historic SMO studies therefore may represent a significant source of conservatism as in this analysis
- If SMO studies are removed from this analysis (due to design limitations) 113 PNECs remain in analysis and:
- 97% of PNECs were above 0.1 mg/kg
- If the lowest PNEC of each API is examined a similar picture emerges:
 - 80% of APIs (32/40) have a lowest PNEC >0.1 mg/kg
 - When excluding SMOs: 92.5% of APIs (36/39) have a lowest PNEC >0.1 mg/kg

Introduction

- Aquatic ERA for human medicinal products⁽¹⁾ and terrestrial ERA for veterinary medicines⁽³⁾ utilize exposure based triggers to prioritize testing and assessment.
- Recent proposed draft triggers from EMA lack a clear science-based justification
- Data generated since 2006 under current human medicines guidance were collated from publicly available EPARs and internal company databases

Results

Table 2 Descriptive statistics on data collected

	Soil micro- organism	Terrestrial plants	Earthworm	Collembola
Total available PNECs	37	35	39	36
Lowest API PNEC	9	15	5	11
Lowest API PNEC (exc. SMO)	N/A	17	6	16
PNEC ≤0.1 mg/kg	5	1	0	2
% PNECs ≤0.1 mg/kg				
	N/A			

(*) Including SMO studies (n=147); (**) Excluding SMO studies (n=113)

Figure 2 Lowest API PNEC excluding SMOs (n=39) Red line = proposed PECsoil action limit (0.1 mg/kg)

• The data is examined to establish the scientific basis for a PECsoil action limit.

Methods

- Data from 40 Active Pharmaceutical Ingredients (APIs) were collated from publicly available EPARs or from internal company databases of participating companies.
- A full terrestrial ecotoxicity dataset was available for 35 APIs; investigating effects on soil micro-organisms (SMO), terrestrial plants, earthworm and collembola. The remaining APIs had one or more studies
- In total 147 individual study endpoints were available for investigation and PNEC derivation
- PNECs were calculated based on NOECs or

- When examined independently a dataset of 147 PNECs could be calculated.
- Of these only 8 PNECs (5%) would be below the proposed PECsoil action limit of 0.1 mg/kg
 95% of all PNECs were above 0.1 mg/kg
- SMO studies were found to be unique in that in almost all cases the tested concentrations were chosen based on the PEC of the API.
 - All of the 5 SMO PNECs below 0.1 mg/kg were based on (or above) the PEC
 - Therefore no risk was identified (limit test)

Figure 1 Distribution of Terrestrial PNECs (n=147) Red line = proposed PECsoil action limit (0.1 mg/kg)

Terrestrial Plant PNEC
Earthworm PNEC
CollembolaPNEC

Conclusions

- A database of 147 endpoints from 40 APIs was examined.
- Even considering highly conservative PNECs from soil micro-organism studies, 95% of all terrestrial PNECs are >0.1 mg/kg
- A PEC action limit of ≥0.1 mg/kg soil is proposed as a trigger for terrestrial ERA for human medicinal products.
- Implementation of such an approach is protective and in-line with both existing aquatic guidance for human medicines⁽¹⁾, and veterinary medicine guidance for terrestrial assessments⁽³⁾.

EC₁₀ for each study according to current guidance by applying an appropriate safety factor (10) to the endpoint⁽²⁾

- No assessment factors were applied to SMO studies, the guidance⁽²⁾ states:
 "An assessment factor is not relevant to this endpoint when the difference in rates of nitrate formation ...is equal to or less than 25% at any sampling time before day 28, the active ingredient can be evaluated as having no long-term influence on nitrogen transformation in soils.
- The distribution of PNECs were analyzed for each PNEC individually and also based on collective data for APIs

🔵 Terrestrial Plant PNEC 🔺 Earthworm PNEC 🔳 CollembolaPNEC 😑 SMO PNEC

 Further investigations are proposed examining impact of pharmacological mode of action and comparing these effects data with the EU default PECsoil and consumption based PECsoil values.

References

- 1. CHMP 2006. Guideline on the environmental risk assessment of medicinal products for human use EMEA/CHMP/SWP/4447/00 corr. 2
- CHMP 2018. Guideline on the environmental risk assessment of medicinal products for human use; EMEA/CHMP/SWP/4447/00 Rev. 1
- CVMP 2000. Environmental impact assessment (EIAS) for veterinary medicinal products - Phase I; CVMP/VICH/592/98-FINAL.

GVIVIF/VIGH/392/3

Supported by AstraZeneca

Presented at the SETAC Europe 30th Annual Meeting, Virtual Conference, 03-07 May 2020