

ASCO 2016 Investor Science Event

Chicago, IL, USA 6 June 2016

Forward-looking statements

In order, among other things, to utilise the 'safe harbour' provisions of the US Private Securities Litigation Reform Act 1995, we are providing the following cautionary statement:

This document contains certain forward-looking statements with respect to the operations, performance and financial condition of the Group, including, among other things, statements about expected revenues, margins, earnings per share or other financial or other measures. Although we believe our expectations are based on reasonable assumptions, any forward-looking statements, by their very nature, involve risks and uncertainties and may be influenced by factors that could cause actual outcomes and results to be materially different from those predicted. The forward-looking statements reflect knowledge and information available at the date of preparation of this document and AstraZeneca undertakes no obligation to update these forward-looking statements. We identify the forward-looking statements by using the words 'anticipates', 'believes', 'expects', 'intends' and similar expressions in such statements. Important factors that could cause actual results to differ materially from those contained in forward-looking statements, certain of which are beyond our control, include, among other things: the loss or expiration of, or limitations to, patents, marketing exclusivity or trademarks, or the risk of failure to obtain and enforce patent protection; the risk of substantial adverse litigation/government investigation claims and insufficient insurance coverage; effects of patent litigation in respect of IP rights; exchange rate fluctuations; the risk that R&D will not yield new products that achieve commercial success; the risk that strategic alliances and acquisitions, including licensing and collaborations, will be unsuccessful; the impact of competition, price controls and price reductions; taxation risks; the risk of substantial product liability claims; the impact of any delays in the manufacturing, distribution and sale of any of our products; the impact of any failure by third parties to supply materials or services; the risk of failure of outsourcing; the risks associated with manufacturing biologics; the risk of delay to new product launches; the difficulties of obtaining and maintaining regulatory approvals for products; the risk of failure to adhere to applicable laws, rules and regulations; the risk of failure to adhere to applicable laws, rules and regulations relating to anticompetitive behaviour; the risk that new products do not perform as we expect; failure to achieve strategic priorities or to meet targets or expectations; the risk of an adverse impact of a sustained economic downturn; political and socio-economic conditions; the risk of environmental liabilities; the risk of occupational health and safety liabilities; the risk associated with pensions liabilities; the risk of misuse of social medial platforms and new technology; the risks associated with developing our business in emerging markets; the risk of illegal trade in our products; the risks from pressures resulting from generic competition; the risk of failure to successfully implement planned cost reduction measures through productivity initiatives and restructuring programmes; economic, regulatory and political pressures to limit or reduce the cost of our products; the risk that regulatory approval processes for biosimilars could have an adverse effect on future commercial prospects; the impact of failing to attract and retain key personnel and to successfully engage with our employees; the impact of increasing implementation and enforcement of more stringent anti-bribery and anti-corruption legislation; and the risk of failure of information technology and cybercrime. Nothing in this presentation / webcast should be construed as a profit forecast.

Agenda

Welcome

Oncology strategy and commercial update

DNA damage response (DDR)

Immuno-oncology: Late- & early-stage development

Haematology

Summary and Q&A

Focused strategy

Three therapy areas

Commitment to further focus the portfolio

Delivering the late-stage pipeline

Key late-stage medicines & lifecycle Phase III trials or under regulatory review*

Key late-stage medicines & lifecycle Phase III trials or under regulatory review*

Oncology cediranib* (ovarian cancer) selumetinib (lung cancer) durvalumab (multiple cancers) durva + treme (multiple cancers) acalabrutinib (blood cancers) moxetumomab (leukaemia) Lynparza (multiple cancers) Tagrisso

(lung cancer)

Status as of 29 April 2016 (Q1 2016 Results)

7

Oncology strategy and commercial update

Mondher Mahjoubi

Senior Vice President, Global Product Strategy Oncology

Oncology: Scientific leadership around four key platforms Personalised healthcare as key driver

Tumour drivers and resistance

DNA damage response (DDR)

Immuno-oncology (IO)

Antibody conjugates

Oncology: Aiming for first or best in class

Deliver six new medicines to patients by 2020

2013 - 2015	2016 - 2018	2019+
1st PARP inhibitor	Beyond BRCA and ovarian cancer	Leader in DDR
1st EGFR-T790M inhibitor	Earlier lines and combinations	Leader in EGFRm
	Best-in-class BTK inhibitor	IO in haematology
	Lead with IO/IO combination	Leader in IO
		Next wave of innovation

Tagrisso: Fastest development time

Rationally-designed and targeted treatment

- 32 months from first in human to first approval; leapfrogged competition
- US, EU, Japan approved within six months
- Aggressive development plan, including China

Tagrisso: Reaching more patients through life cycle Transforming outcomes for patients with EGFRm lung cancer Transform survival with combinations and sequencing

Tagrisso: Patient example BLOOM trial effective in CNS

Diagnosis of advanced NSCLC June 2013 with most-recent disease progression March 2015

- Prior therapy included *Iressa* (March 2013-May 2015) and whole-brain radiotherapy (April 2013-May 2015)
- *Tagrisso* 160mg once daily started 20 May 2015
- Response ongoing from week 6. Week 12 images not presented as minimal changes were observed during weeks 6-12
- Stable extracranial disease since week 6; partial response since week 12
- Normal neurological function since baseline

Brain MRI - baseline

Source: ASCO 2016, abstract 9002

Tagrisso: Potential in 1L EGFRm NSCLC Early, but very promising data from Phase I

Tagrisso: Key data timeline Overview of clinical programme

			Phase II
	AURA3 2L EGFRm T790M		Phase III
AURA 2L EGFRm T790M	AURA17 2L EGFRm T790M	TATTON Phase Ib combinations with savolitinib and selumetinib	
AURA2 2L EGFRm T790M	BLOOM EGFRm CNS disease	FLAURA 1L EGFRm	ADAURA Adjuvant EGFRm
2015	2016	2017	2018+

Phase I

Lynparza: Ovarian cancer

Long-term survival benefit in BRCAm patients

- First PARPi to show long-term
 OS data
- Long-term responders indicate IO-like benefit with 15% of patients on treatment for five years
- sBRCA patients show similar benefit to gBRCA
- Future patient selection to be based on HRRm test, including BRCAwt/HRRm patients (~8% of all ovarian cancer patients)

Lynparza: Expanding beyond BRCA Two dimensions driving life-cycle programme

Lynparza: Future newsflow Expected regulatory submissions

	Study 8 (prostate cancer)
	PAOLA bevacizumab combination (ovarian cancer)
SOLO-1 (1L BRCAm ovarian cancer)	OlympiA (adjuvant BC)
SOLO-2 (2L BRCAm PSR ovarian cancer)	POLO (pancreatic cancer)
OlympiAD (advanced breast cancer)	SOLO-3 (3L+ gBRCAm PSR ovarian cancer)
2017	2018+
Phase II Phase III	

Beyond Lynparza: DDR

Developing chemo-free regimen, extending survival

DDR abrogation is frequent across multiple cancer types

DDR abrogations include:

Cell cycle, oncogenic driver and homologous recombination repair

Source: AstraZeneca data on file

DDR

Susan Galbraith

Senior Vice President, Head of Oncology, IMED Biotech Unit

Targeting DNA damage response (DDR)

An Achilles heel where dependencies can be targeted selectively

DDR deficiency is an early (truncal) event leading to:

- Deep responses: Homogeneity across tumours with all cancer cells targeted
- High response rates: Reduced opportunity for innate resistance
- *Wide therapeutic index:* Selective sensitivity to DDR drugs (unlike chemotherapies)

DDR engages the immune response

Synergistic opportunities with IO agents

Emerging evidence: DDR provides potential for cure

Lynparza in BRCAm ovarian cancer

- · Patients still alive after eight years+
- ~25% patients are long-term responders (≥two years)

AZD1775 + carboplatin in platinum-resistant ovarian cancer

- 42% ORR in combination with platinum chemotherapy
- 3/22 patients showed responses lasting one to three years

Lynparza + AZD1775 in pre-clinical SCLC PDX model

• Five/seven cures after only 21 days of treatment with mice alive after more than one year

Patient selection

Critical component of delivering medical benefit

Reason to believe HRD LOH is **NOT** the right patient selection

- BRCAwt/HRD +ve patients in Study 19: No statisticallysignificant benefit
- HRD score cut-off base currently being refined

Reason to believe **HRRm test is better** in identifying BRCAwt patients likely to benefit from *Lynparza*

Study 19

Patient selection Example in prostate cancer

AstraZeneca HRR 15 gene panel

Genomic aberrations in DNA repair in patients with mCRPC*

Next-generation sequencing

Platform transforming accessibility to patients

DDR engages the immune response

Biomarker evidence

CD4 and CD8 iTILs in Breast Tumour Samples

DDRD negative core No lymphocytes

DDRD positive core Profuse lymphocytic infiltration

Clinical evidence

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

D.T. Le, J.N. Uram, H. Wang, B.R. Barlett, H. Kemberling, A.D. Eyring, A.D. Skora, B.S. Luber, N.S. Azad, D. Laheru, B. Biedrzycki, R.C. Donehower, A. Zaheer, G.A. Fisher, T.S. Crocenzi, J.J. Lee, S.M. Duffy, R.M. Goldberg, A. de la Chapelle, M. Koshiji, F. Bhaijee, T. Huebner, R.H. Hruban, L.D. Wood, N. Cuka, D.M. Pardoll, N. Papadopoulos, K.W. Kinzler, S. Zhou, T.C. Cornish, J.M. Taube, R.A. Andres, J.R. Eshleman, B. Vogelstein, and L.A. Diaz, Jr.

MSI-H is caused by MMR deficiency, but also impacts DNA double-strand breakrepair capability due to microsatellite deletions in ATM gene

DDR portfolio

Emergence of a new cancer-treatment paradigm

40-50% with DDR defects

- Loss of one of more DNA repair pathways
- Increased levels of endogenous DNA damage
- DNA replication stress
- Genomic instability

AZD1775

Potential for monotherapy post PARPi

Monotherapy Best percentage change tumour size*

9/12 ovarian patient-derived tumour models resistant to *Lynparza* respond to AZD1775 single agent

* Two additional patients with stable disease had evaluable, but not measurable, disease; †Patient had clinical progression; ‡Patient had new lesion

Source: AACR 2016

Lynparza + AZD1775 combination

Pre-clinical data *Lynparza* + AZD1775 in TNBC patient-derived tumour models show improved activity vs *Lynparza* monotherapy

amplified)

Lynparza + AZD1775 combination in Phase I to identify dose/schedule

Source: AstraZeneca data on file; AACR 2016, O'Connor; ASCO 2016, abstract 5562

AZD0156 (ATM) and AZD6738 (ATR) Combinations with *Lynparza* in Phase I

Maximising DNA damage in S-phase

- ATM coordinates the repair of double-strand breaks (DSBs)
- **ATR** is required to repair stalled DNA replication forks
- **PARP** detects and triggers the repair of single-strand breaks (SSBs). Inhibition of PARP causes stalled replication forks and a build up of SSBs which convert to DSBs

Lynparza + AZD0156 and Lynparza + AZD6738

Summary

- **1** DDR deficiencies are common in multiple cancers (40-50%)
- 2 Targeting DDR deficiencies is clinically validated and a subset of patients experience long-term benefit
- **3** Patient selection is critical. NGS test development is underway for HRR panel for *Lynparza* and AZD1775
- 4 There is a significant scientific rationale and clinical evidence that DDR and immune responses are linked and potentially synergistic
- 5 AstraZeneca portfolio of DDR-targeting agents is the broadest with multiple agents in proof-of-concept studies

IO: Late-stage development

Rob lannone, MD, MSCE

Senior Vice President, IO, Global Medicines Development

CTLA-4 and PD-L1

IO strategy built on fundamental checkpoints in anti-cancer immunity

CTLA-4: 'Hard-wired' negative regulator of T-cell activation

PD-L1: Adaptive resistance; induces T-cell exhaustion

CTLA-4 and PD-L1

IO strategy built on fundamental checkpoints in anti-cancer immunity

Durvalumab monotherapy: 2L urothelial bladder cancer Breakthrough Therapy Designation granted

Subgroup

<u>PD-L1 +ve</u> 76% (19/25) had a reduction in tumour size (RECIST 1.1 ORR = 46%)

PD-L1 -ve

36% (4/11) had a reduction in tumour size (RECIST 1.1 ORR = 0%)

* Unconfirmed response (all other patients with best tumour shrinkage \geq 30% had confirmed responses); \blacktriangle Unconventional response Response evaluable population (n = 42); patients who initiated trial therapy \geq 12 weeks prior to DCO and had \geq 1 follow-up scans

Durvalumab monotherapy: 1L NSCLC 1L cohort from Study 1108 (Phase I/II)

PD-L1 +ve: Durvalumab monotherapy 29% ORR (95% CI: 17 - 43) in PD-L1 +ve tumours

* Response-evaluable population = patients with ≥24 weeks follow up ** PD-L1 +ve defined as ≥25% tumour cells stained for PD-L1 at any intensity *** PD-L1 -ve defined as <25% tumour cells stained for PD-L1 at any intensity Source: ASCO 2016, abstract 9029

PD-L1 -ve: Durvalumab monotherapy

11% ORR (95% CI: 0 - 48) in PD-L1 -ve tumours

Durva + treme: Clinical activity in PD-L1 low/-ve NSCLC

60-70% of patients below 10% PD-L1 expression level

Durva + treme combinations address large unmet need: PD-L1 low/-ve tumours in lung cancer

Durva and durva + treme clinical programmes Leading in **early** and **first-line** settings in key cancers

	ADJUVANT	PACIFIC	MYSTIC	NEPTUNE	Chemotherapy combination	KESTREL	DANUBE	
Trial design	Phase III (randomised)	Phase III (randomised)	Phase III (randomised) EGFR/ALK wt Non-sq/sq <u>Arms:</u> durvalumab durva + treme SoC	Phase III (randomised) EGFR/ALK wt Non-sq/sq <u>Arms:</u> durva + treme SoC	Phase III (randomised) EGFR/ALK wt Non-sq Arms: durva + chemo durva + treme + chemo SoC	Phase III (randomised) <u>Arms:</u> durvalumab durva + treme SoC	Phase III (randomised) Cis-eligible Cis-ineligible <u>Arms:</u> durvalumab durva + treme SoC	First line
Primary endpoints	PFS	PFS	PFS OS	OS	TBD	PFS OS	PFS	
Data readout	2020	H1 2017	H1 2017 (PFS) 2018 (OS)	2018	TBD	2018	2018	
	Non-small cell lung cancer			Head & neck cancer	Bladder cancer			

Lynparza + durvalumab (MEDIOLA trial) Leading with novel anti-PDL1 plus targeted-therapy combinations

IO: Early-stage development

David Berman

Senior Vice President, R&D Oncology, MedImmune

Building on anti-PD1/L1 cornerstone with new MOAs

- 1) PD-1/L1 blockade is highly active, but not every patient responds
- 2) Some tumours are insensitive to PD-1/L1 blockade

Broad clinical-stage IO pipeline Enhancement of anti-tumour immunity

Unlocking the power of IO combinations

Multiple ongoing IO combinations based on complementary MOAs

Durvalumab combination (clinical collaboration)
IDO
HDAC
IMCgp100
CSF-1R
TGFβR-1
CD19-CART
CCR4
HPVE7

Tremelimumab combination

Develop the science Guiding the IO portfolio and identification of new targets

45

TLR 7/8 (MEDI9197) primes new immune response Activates 'sensor' and 'presenter' dendritic cells (DC)

IO synergy with antibody conjugates

Source: AstraZeneca data on file

Early-stage IO Expected key data

1000			durvalumab + NKG2A
Y		GITR	durvalumab + PD-1
10		TLR 7/8	hOX40 + tremelimumab
	hOX40	durvalumab + CD73	durvalumab + hOX40
CONTRACT CONTRACT	2016	2017	/ 2018+
		1	Phase I

Haematology

Sean Bohen

Executive Vice President, Global Medicines Development & Chief Medical Officer

Complementary strategies Establish leadership in haematology

Elevating the standard of care in B-cell cancers

- Acalabrutinib has opportunity to become SoC in CLL and NHL
- Acerta as Haematology Centre of Excellence

🔆 Acerta Pharma

A member of the AstraZeneca Group

Driving towards a cure in multiple haematological-disease states

- Immediate access to a portfolio of effective small-molecule medicines
- Aspiration to cure patients with durvalumab combinations in areas of high unmet medical need

Leverage breadth of portfolio and clinical-trial opportunities to become the partner of choice in haematology and transform care

AstraZeneca: Potential haematology leadership Driven by access to rich portfolio across two growth platforms

Further indications and combinations to be determined

BTK inhibitor class

Cornerstone of treatment for B-cell malignancies

- Long treatment duration drives market growth (\$19bn G7 market by 2024¹)
- Continuous BTK inhibition is critical to improving treatment outcomes²
- **Tolerability is key** to maintaining dose intensity and ability to combine with other treatments for improved efficacy
- Ibrutinib is the only approved medicine in the BTK-inhibitor class
- Off-target activity can lead to rash, diarrhoea, arthralgia/myalgia, severe bleeding and atrial fibrillation³

Acalabrutinib has the potential to become a best-in-class BTKi

¹ Decision Resources, NHL report Nov 2015

² Dose adherence and baseline exposure analysis of the ibrutinib 420mg dose administered to patients with previously treated CLL; ASCO 2015 abstract 7012

³ P. Jain 2015. Outcomes of patients with chronic lymphocytic leukemia after discontinuing ibrutinib. Blood. 125(13):2062-2067

K.J. Maddocks 2014. Etiology of Ibrutinib Therapy Discontinuation and Outcomes in Patients With Chronic Lymphocytic Leukemia. JAMA. Oncol.doi:10.1001/jamaoncol.2014.218

M. Farooqui 2015. Atrial Fibrillation in CLL/SLL Patients on Ibrutinib; ASH abstract 2933

Acalabrutinib

Designed to deliver differentiated clinical profile, best-in-class potential

+

Highly-potent and selective BTK inhibition Minimal effects on TEC, EGFR, or ITK signaling Kinase inhibition IC₅₀ (nM) Kinase acalabrutinib ibrutinib BTK 5.1 1.5

acalabrutinib ibrutinib 1.5 TEC 93 7.0 BMX 46 0.8 TXK 368 2.0 FRBB2 ~1000 6.4 EGFR >1000 5.3 ITK >1000 4.9 JAK3 >1000 32 BLK >1000 0.1 Covey AACR 2015, abstract 2596

Continued BTK inhibition

Short half-life prevents plasma accumulation and enables complete 24-hr BTK coverage (≥97%)¹

Low inter-patient variability Time of assessment

Optimal disease-control potential

Improved safety and tolerability potential

Acalabrutinib ASCO 2016: Compelling efficacy in front-line CLL

R/R CLL*: ASH 2015			
n (%)	All cohorts (N=60) [†]		
CR	0 (0)		
PR	51 (85)		
PR+L	6 (10)		
SD	3 (5)		
PD	0 (0)		
ORR (CR + PR)	51 (85%)		
ORR (CR + PR + PRL)	57 (95%)		

FL CLL*: ASCO 2016			
n (%)	All cohorts (N=72)		
CR	0 (0)		
PR	63 (88)		
PR+L	7 (10)		
SD	2 (3)		
PD	0 (0)		
ORR (CR + PR)	63 (88%)		
ORR (CR + PR + PRL)	70 (97%)		

PR+L = Partial Response with Lymphocytosis

ORR in del17p: 100%

†30 Sept 2015; ASH 2015 data; best overall response assessment; median time to last response assessment = 11 months

‡Includes two SD patients (100 mg BID) with all nodes <1.5 cm at baseline CT

*Based on modified IWCLL 2008., *investigator assessed

PRL, PR with lymphocytosis aEfficacy-evaluable patients had at least

aEfficacy-evaluable patients had at least one response assessment after first dose of trial drug * investigator assessed Source: ASH 2015; ASCO 2016, abstract 7521

Acalabrutinib

Favourable safety profile

R/R CLL: ASH 2015

Reported in \geq 15% of patients (N=61)

Adverse event	All Grades, n (%)	Grades 3/4, n (%)
Headache	26 (43)	0
Diarrhea	24 (39)	1 (2)
Weight increased	16 (26)	1 (2)
Pyrexia	14 (23)	2 (3)
Upper respiratory tract infection	14 (23)	0
Fatigue	13 (21)	2 (3)
Oedema peripheral	13 (21)	0
Hypertension	12 (20)	4 (7)
Nausea	12 (20)	0
Contusion	11 (18)	0
Arthralgia	10 (16)	1 (2)
Petechiae	10 (16)	0
Weight decreased	10 (16)	0

FL CLL: ASCO 2016

Reported in \geq 15% of patients (N=74)

Adverse event	All Grades, n (%)	Grades 3/4, n (%)
Headache	30 (41)	1 (1)
Diarrhea	26 (35)	0
Arthralgia	16 (22)	1 (1)
Nausea	13 (18)	2 (3)
Increased weight	13 (18)	1 (1)
Contusion	13 (18)	0
Rash	12 (16)	1 (1)

Multiple occurrences of the same event for a given subject were counted once for each system organ class and each preferred term

There were no cases of atrial fibrillation or acalabrutinib-associated major bleeding

55 Source: ASH 2015; ASCO 2016, abstract 7521

Acalabrutinib clinical development

Haematological malignancies represent first registration opportunity

Indication	Trial design and line of therapy	Phase
	acalabrutinib vs. ibrutinib CLL relapsed/refractory	Ш
CLL	acalabrutinib + obinutuzumab vs. obinutuzumab + chlorambucil vs. acalabrutinib CLL front/first line	Ш
	acalabrutinib CLL relapsed/refractory, ibrutinib-intolerant	Ш
MCL	acalabrutinib MCL relapsed/refractory	Ш
WM	acalabrutinib WM relapsed/refractory	Ib/II

- Early monotherapy and combination trials ongoing in Richter's transformation, DLBCL, FL, MM
- Monotherapy and combination trials ongoing in multiple solid tumours (pancreatic, bladder, ovarian cancers and NSCLC, HNSCC and GBM)

Closing

Sean Bohen

Executive Vice President of Global Medicines Development and Chief Medical Officer

Key takeaways

- **1** *Lynparza* and *Tagrisso* encouraging launches and strong bases for further approvals
- 2 DDR significant potential across multiple tumour types. AstraZeneca portfolio of DDR-targeting medicines is the broadest and leading the field
- **3** IO: Late-stage development opportunities across a wide range of combination therapies with key data points in H1 2017
- 4 IO: Early-stage development building on the anti-PD1/L1 cornerstone with OX40 next
- 5 Haematology potential leadership driven by access to rich portfolio of assets across two growth platforms

Please press *1 on your phone if you wish to ask a question

- Pascal Soriot, moderator
- Sean Bohen
- Mondher Mahjoubi
- Susan Galbraith
- David Berman
- Rob lannone
- Other members of the AstraZeneca Oncology team

Investor science event expected to end at 8:30 PM CDT

ASCO 2016 Investor Science Event

Chicago, IL, USA 6 June 2016

